Init
This commit is contained in:
127
QUICKSTART.md
Normal file
127
QUICKSTART.md
Normal file
@@ -0,0 +1,127 @@
|
||||
# Quick Start Guide
|
||||
|
||||
## 1. Get Your OpenRouter API Key
|
||||
|
||||
1. Visit [OpenRouter](https://openrouter.ai/)
|
||||
2. Sign up for a free account
|
||||
3. Go to [Keys](https://openrouter.ai/keys) section
|
||||
4. Create a new API key
|
||||
5. Copy your API key
|
||||
|
||||
## 2. Configure the Tool
|
||||
|
||||
```bash
|
||||
# Copy the environment template
|
||||
cp .env.example .env
|
||||
|
||||
# Edit .env and add your API key
|
||||
echo "OPENROUTER_API_KEY=your_key_here" >> .env
|
||||
```
|
||||
|
||||
Or set it directly in your shell:
|
||||
```bash
|
||||
export OPENROUTER_API_KEY=your_key_here
|
||||
```
|
||||
|
||||
## 3. Run Your First Analysis
|
||||
|
||||
```bash
|
||||
# Basic usage
|
||||
uv run pdf-to-kcf your_document.pdf
|
||||
|
||||
# This will create a file: your_document_insights.json
|
||||
```
|
||||
|
||||
## Example Output
|
||||
|
||||
The tool will generate a JSON file with structured insights like:
|
||||
|
||||
```json
|
||||
{
|
||||
"insights": [
|
||||
{
|
||||
"type": "fact",
|
||||
"insight": "The company revenue increased by 25% in Q4",
|
||||
"content": "According to the financial report, Q4 revenue reached $2.5M, up 25% from Q3...",
|
||||
"attributes": [
|
||||
{"attribute": "source", "value": "Financial Report"},
|
||||
{"attribute": "quarter", "value": "Q4"},
|
||||
{"attribute": "confidence", "value": "high"}
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "opinion",
|
||||
"insight": "The author recommends investing in AI infrastructure",
|
||||
"content": "We strongly believe that investing in AI infrastructure is critical...",
|
||||
"attributes": [
|
||||
{"attribute": "sentiment", "value": "positive"},
|
||||
{"attribute": "section", "value": "recommendations"}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Try Different Models
|
||||
|
||||
```bash
|
||||
# Use GPT-4
|
||||
uv run pdf-to-kcf document.pdf -m openai/gpt-4o
|
||||
|
||||
# Use Gemini
|
||||
uv run pdf-to-kcf document.pdf -m google/gemini-pro-1.5
|
||||
|
||||
# Use Llama 3.1
|
||||
uv run pdf-to-kcf document.pdf -m meta-llama/llama-3.1-70b-instruct
|
||||
```
|
||||
|
||||
### Custom Output Location
|
||||
|
||||
```bash
|
||||
uv run pdf-to-kcf document.pdf -o /path/to/output.json
|
||||
```
|
||||
|
||||
### Start from Specific Page
|
||||
|
||||
```bash
|
||||
# Start analysis from page 5 (0-indexed, so this is the 6th page)
|
||||
uv run pdf-to-kcf document.pdf -s 5
|
||||
```
|
||||
|
||||
## How It Works
|
||||
|
||||
1. The tool loads your PDF and extracts text
|
||||
2. An AI agent analyzes the content starting from page 0 (or your specified page)
|
||||
3. The agent autonomously decides if it needs to read more pages
|
||||
4. It extracts structured insights classified as facts, opinions, or comments
|
||||
5. Each insight includes the original content and relevant metadata
|
||||
6. Results are saved to a JSON file
|
||||
|
||||
## Pricing
|
||||
|
||||
OpenRouter charges based on the model you use:
|
||||
- Claude 3.5 Sonnet (default): ~$3 per million input tokens
|
||||
- GPT-4o: ~$2.50 per million input tokens
|
||||
- Llama 3.1 70B: ~$0.35 per million input tokens
|
||||
|
||||
Most PDFs will cost just a few cents to analyze.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### "No API key found"
|
||||
Make sure you've set `OPENROUTER_API_KEY` in your `.env` file or environment.
|
||||
|
||||
### "Model not found"
|
||||
Check the model name format: `<provider>/<model-name>` (e.g., `anthropic/claude-3.5-sonnet`)
|
||||
See available models at https://openrouter.ai/models
|
||||
|
||||
### "PDF not found"
|
||||
Use the full path to your PDF file, or navigate to the directory containing it first.
|
||||
|
||||
## Next Steps
|
||||
|
||||
- Read the full [README.md](README.md) for more details
|
||||
- Check [CLAUDE.md](CLAUDE.md) for architecture details
|
||||
- See [OpenRouter models](https://openrouter.ai/models) for all available models
|
||||
Reference in New Issue
Block a user